Define in markdown. Run on cron, CI/CD, or serverless.
No SDK. No flowcharts. Just AI agents that run themselves.
Quick Start • Documentation • Examples
# Run an agent directly from the web - no files, no install!
ANTHROPIC_API_KEY=sk-ant-... npx -y agentuse@latest run https://agentuse.io/hello.agentuse
# Or override the model to gpt-5
OPENAI_API_KEY=sk-... npx -y agentuse@latest run https://agentuse.io/hello.agentuse -m openai:gpt-5Step 1: Create daily-reporter.agentuse:
---
model: openai:gpt-5
---
Generate a daily motivation quote with an interesting fact about technology.
Format as JSON with 'quote' and 'fact' fields.Step 2: Run it:
# Try without installing (needs OPENAI_API_KEY for this example)
OPENAI_API_KEY=sk-... npx -y agentuse@latest run daily-reporter.agentuse
# Or install globally for production use
npm install -g agentuse
agentuse run daily-reporter.agentuse
# Schedule it (cron, CI/CD, serverless)
0 9 * * * agentuse run daily-reporter.agentuse >> daily-quotes.jsonThat's it! Your AI agent runs on autopilot - CI/CD pipelines, cron jobs, webhooks, or serverless functions.
---
model: openai:gpt-5
description: Daily sales metrics reporter - runs daily at 9am via cron
mcpServers:
postgres:
command: uv
args: ["run", "postgres-mcp", "--access-mode=restricted"]
requiredEnvVars:
- DATABASE_URI
---
Query sales_metrics table for yesterday's data.
Generate executive summary with trends and alerts.
Format as markdown report.---
model: openai:gpt-5
description: SEO performance analyzer - runs weekly via GitHub Actions
mcpServers:
dataforseo:
command: "npx"
args: ["-y", "dataforseo-mcp-server"]
requiredEnvVars:
- DATAFORSEO_USERNAME
- DATAFORSEO_PASSWORD
---
Analyze SEO performance for https://blog.example.com/blog-post
Compare rankings with top 3 competitors in our niche.
Generate keyword opportunities and content gap analysis.
Output recommendations as JSON for our CMS.---
model: openai:gpt-5
description: Social media automation bot - runs every 6 hours via cron
mcpServers:
twitter:
command: npx
args: ["-y", "@enescinar/twitter-mcp"]
requiredEnvVars:
- API_KEY
- API_SECRET_KEY
- ACCESS_TOKEN
- ACCESS_TOKEN_SECRET
exa:
command: npx
args: ["-y", "exa-mcp-server", "--tools=web_search_exa"]
requiredEnvVars:
- EXA_API_KEY
disallowedTools:
- deep_researcher_*
---
Search for trending tech topics using Exa.
Generate 5 engaging posts based on current trends.
Choose the best one and post to X.Why AgentUse? The philosophy behind the project...
AI tools today force you to choose: interactive copilots that require your constant attention, visual workflow builders with version control nightmares, or SDK-heavy frameworks with hundreds of lines of boilerplate.
What if AI agents could run like cron jobs? Define what you want in markdown, schedule with cron or CI/CD, and let it work while you don't. No chat. No babysitting. Just results.
AgentUse puts AI agents on autopilot. Define agents in markdown, run via cron, CI/CD, or serverless, and get results asynchronously. This means:
- Runs unattended - cron jobs, CI/CD pipelines, serverless functions
- Version control just works - diff, review, and merge agents like any other code
- No SDK required - if you can write plain English, you can build an agent
- Production-ready - built-in retries, streaming, error recovery, and MCP support
Copilots assist you. AgentUse agents work for you.
| 🚀 Autopilot Execution | 🔧 Developer Experience | 🔌 Integrations |
|---|---|---|
| • Cron jobs • CI/CD pipelines • Serverless functions • Any external trigger |
• Markdown format • Zero boilerplate • Git-friendly • URL-shareable agents |
• MCP servers • Multiple AI providers (Anthropic, OpenAI, OpenRouter) • Plugin system • Sub-agent composition |
# Run any agent without installing
npx -y agentuse@latest run your-agent.agentusenpm install -g agentuse
# or: pnpm add -g agentuse# Interactive login (recommended)
agentuse auth login
# Or use environment variables
export ANTHROPIC_API_KEY="sk-ant-..."
export OPENAI_API_KEY="sk-..."
export OPENROUTER_API_KEY="sk-or-..."📚 Full installation guide → 📘 Authentication docs →
| 🚀 Getting Started | 📖 Guides | 📘 API Reference | 💡 Templates |
|---|---|---|---|
| 5-minute tutorial | Learn concepts | Complete reference | Example agents |
Agents are markdown files with YAML frontmatter for configuration and plain English instructions:
---
model: anthropic:claude-sonnet-4-5 # Required: AI model
mcpServers: {...} # Optional: MCP tools
subagents: [...] # Optional: sub-agents
---
Your agent instructions in markdown...📚 Agent syntax guide → 📘 Model configuration → 🔧 MCP servers → 🤖 Sub-agents →
We welcome contributions! Here's how to get started:
- 📖 Read our Contributing Guide
- 🐛 Report bugs via GitHub Issues
- 💡 Share ideas in Discussions
- 🔧 Submit PRs with improvements
- ⭐ Star the repo to show support!
Apache License 2.0 - see LICENSE file for details.
Made with ❤️ by the AgentUse community
GitHub •
Documentation •
Website