DataFrame.query
Query the DataFrame by the result of a logical comparison or boolean mask.
danfo.DataFrame.query(kwargs)
kwargs
Object
{
condition: A logical boolean mask,
column : str, name of the column
is: Logical operator, one of ">", "<", ">=", "<=", and. "=="
to: Int, Float, Str. Value to compare against,
inplace: boolean. true
false. Whether to perform operation to the original Object or create a new one.
}
Examples
Query a DataFrame using a boolean mask
const dfd = require("danfojs-node")
let data = {
"A": ["Ng", "Yu", "Mo", "Ng"],
"B": [34, 4, 5, 6],
"C": [20, 20, 30, 40]
}
let df = new dfd.DataFrame(data)
df.print()
let query_df = df.query(df["B"].gt(5))
query_df.print() //after query╔════════════╤═══════════════════╤═══════════════════╤═══════════════════╗
║ │ A │ B │ C ║
╟────────────┼───────────────────┼───────────────────┼───────────────────╢
║ 0 │ Ng │ 34 │ 20 ║
╟────────────┼───────────────────┼───────────────────┼───────────────────╢
║ 1 │ Yu │ 4 │ 20 ║
╟────────────┼───────────────────┼───────────────────┼───────────────────╢
║ 2 │ Mo │ 5 │ 30 ║
╟────────────┼───────────────────┼───────────────────┼───────────────────╢
║ 3 │ Ng │ 6 │ 40 ║
╚════════════╧═══════════════════╧═══════════════════╧═══════════════════╝
╔════════════╤═══════════════════╤═══════════════════╤═══════════════════╗
║ │ A │ B │ C ║
╟────────────┼───────────────────┼───────────────────┼───────────────────╢
║ 0 │ Ng │ 34 │ 20 ║
╟────────────┼───────────────────┼───────────────────┼───────────────────╢
║ 3 │ Ng │ 6 │ 40 ║
╚════════════╧═══════════════════╧═══════════════════╧═══════════════════╝It also supports condition chaining as long as the final boolean mask is the same length as the DataFrame rows. For example in the following code, we use multiple chaining conditions:
Query a DataFrame using logical operators
To query a DataFrame, you can specify the column to use, the logical operator (">", "<", ">=", "<=", and. "=="), and the value to compare against.
Query by a string column in a DataFrame
The query method also works on string columns.
Last updated
Was this helpful?